An asymptotic preserving method for the linear transport equation on general meshes

نویسندگان

چکیده

While many numerical methods for the linear transport equation are available in literature 1D or on Cartesian meshes, fewer works dedicated to resolution of this model unstructured meshes. In context radiative hydrodynamics, we need a method capable handle wide range radiation regimes going from free-streaming diffusion and be coupled with Lagrangian hydrodynamics solver. paper design based micro-macro paradigm Discrete Ordinates (SN) angular discretization, which fulfills these requirements. It allows choose limit scheme scheme. is compared challenging test problems Discontinuous Finite Element (DFE) method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An asymptotic-preserving Monte Carlo method for the Boltzmann equation

In this work, we propose an asymptotic-preserving Monte Carlo method for the Boltzmann equation that is more efficient than the currently available Monte Carlo methods in the fluid dynamic regime. This method is based on the successive penalty method [25], which is an improved BGK-penalization method originally proposed by Filbet-Jin [9]. Here we propose the Monte-Carlo implementation of the me...

متن کامل

Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes

The transport equation, in highly scattering regimes, has a limit in which the dominant behavior is given by the solution of a di usion equation. Angular discretization like the discrete ordinate method (SN ), the truncated spherical harmonic expansion (PN ) or also nonlinear moment models have the same property. For such systems it would be interesting to construct nite volume schemes on unstr...

متن کامل

An Asymptotic Preserving Method for Linear Systems of Balance Laws Based on Galerkin's Method

We apply the concept of Asymptotic Preserving (AP) schemes [14] to the linearized p−system and discretize the resulting elliptic equation using standard continuous Finite Elements instead of Finite Differences. The fully discrete method is analyzed with respect to consistency, and we compare it numerically with more traditional methods such as Implicit Euler’s method.

متن کامل

Asymptotic Preserving Schemes on Distorted Meshes for Friedrichs Systems with Stiff Relaxation: Application to Angular Models in Linear Transport

In this paper we propose an asymptotic preserving scheme for a family of Friedrichs systems on unstructured meshes based on a decomposition between the hyperbolic heat equation and a linear hyperbolic which not involved in the diffusive regime. For the hyperbolic heat equation we use asymptotic preserving schemes recently designed in [FHSN11]-[BDF11]. To discretize the second part we use classi...

متن کامل

An asymptotic-preserving scheme for the semiconductor Boltzmann equation toward the energy-transport limit

We design an asymptotic-preserving scheme for the semiconductor Boltzmann equation which leads to an energy-transport system for electron mass and internal energy as mean free path goes to zero. To overcome the stiffness induced by the convection terms, we adopt an even-odd decomposition to formulate the equation into a diffusive relaxation system. New difficulty arises in the two-scale stiff c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2022

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2021.110859